Extension of Sugar Chains through Acetylenic Intermediates

D. HORTON, J. B. HUGHES, and J. M. J. TRONCHET

(Chemistry Department, The Ohio State University, Columbus, Ohio 43210, U.S.A.)

WE report herein examples of the extension of sugar chains by ethynylation of *aldehydo*-sugar derivatives. The versatility of the terminal acetylene function for a variety of synthetic transformations makes the acetylenic sugar derivatives attractive as intermediates for synthesis of deoxy-sugars, unsaturated sugars of various types, amino-sugars, alditols,¹ and other unusual carbohydrate derivatives, such as occur in many antibiotics. The examples illustrate chain extension of sugars, at the ω -carbon through dialdoses, and at C-1 through *aldehydo*-aldoses.² Degradative methods for configurational assignment are presented.

1,2:3,4-Di-O-isopropylidene- α -D-galactopyranose was oxidized with the dimethyl sulphoxide-NN'-dicyclohexylcarbodi-imide-pyridinium phosphate reagent³ to give 1,2:3,4-di-O-isopropylidene- α -D-galacto-hexodialdo-1,5-pyranose, yield 58%, b.p. <140° (bath, 0.15 mm.), τ 0.24 (1-proton singlet, H-6), $\lambda_{\text{max}}^{\text{film}}$ 3.70, 5.75 μ , Schiff positive. Ethynylation of the latter with ethynylmagnesium bromide in tetrahydrofuran gave 7,8-dideoxy-1,2:3,4-di-O-isopropylidene-D-glycero(and L-glycero)- α -D-galacto-oct-7-ynopyranose, yield 85%, τ 7.45 (1-proton, C=CH), $\lambda_{\max}^{\text{KBr}}$ 2.89, 3.07, 4.72 μ , containing the 6-epimers in about 2:1 proportion (t.l.c.). The preponderant epimer had m.p. 130-131° (from ligroin), τ 7.43 (1-proton doublet, $J_{6.8}$ 2 c./sec., H-8). Hydrogenation of the latter over Lindlar catalyst gave the corresponding 7,8olefin, m.p. 106–108°, τ 3·6–4·9 (4-proton multiplet, H-1, CH=CH₂). These 8-carbon sugar derivatives are of interest for synthesis of structures related to lincomycin.

Ethynylation of 1,2-O-isopropylidene- α -D-*xylo*-pentodialdo-1,4-furanose⁴ (I) gave 6,7-dideoxy-1,2-O-isopropylidene- α -D-gluco(and β -L-ido)-hept-6ynofuranose (II), $\lambda_{\max}^{\text{flm}}$ 3·10, 4·75 μ ; diacetate b.p. 105° (bath, 0·18 mm), $\lambda_{\max}^{\text{flm}}$ 3·10, 4·75, 5·75 μ ,

¹ R. Lespieau, Adv. Carbohydrate Chem., 1946, 2, 107; cf. I. Iwai and K. Tomita, Chem. Pharm. Bull. (Japan), 1963, 11, 184.

² Analyses and spectra were consistent with the given formulations. N.m.r. data refer to deuterochloroform solutions or pure liquids, with tetramethylsilane as internal standard.

³ K. E. Pfitzner and J. G. Moffatt, J. Amer. Chem. Soc., 1963, 85, 3027.

⁴ K. Iwadare, Bull. Chem. Soc. Japan, 1941, 16, 40.

 τ 7.3 (1-proton, C=CH). Benzoylation of (II) gave a mixture of 5-epimeric 3,5-dibenzoates from which the D-gluco-epimer was obtained by fractional crystallization, m.p. 191–193°, $\lambda_{\rm max}^{\rm EB}$ 3.07, 4.70, 5.80 μ , τ 7.55 (1-proton doublet, $J_{5,7}$ 2.5 c./sec., H-7). Reduction of the latter over Lindlar catalyst gave the corresponding 6,7olefin (III), yield 70%, m.p. 143–145°, τ 3.9–4.9 isomer, m.p. 67—69°, $[\alpha]_D^{22}$ –6.5° (c 3, chloroform), and a slower-moving isomer, syrup, $[\alpha]_D^{23} + 24^\circ$ (c 2.4, chloroform). The isomers were hydrogenated over Lindlar catalyst to the corresponding olefins, subjected to ozonolysis, hydrogenated over Adams' catalyst, and hydrolyzed with 1% sulphuric acid for 3 hr. at 100°. The product from the crystalline, lævorotatory isomer was a glucose

(5-proton multiplet, H-1,3,5,6,6'). Ozonolysis of this olefin, followed by reduction with hydrogen over Adams' catalyst, borohydride reduction, and acid hydrolysis, gave a glucose (papergram). This reaction sequence establishes the configuration of the precursors.

2,3:4,5-Di-O-isopropylidene-aldehydo-L-arabinose⁵ was ethynylated to give 4,5:6,7-di-O-isopropylidene-L-gluco(and L-manno)-3,4,5,6,7-pentahydroxyhept-1-yne (IV), yield 85%, $\lambda_{\rm max}^{\rm imm}$ 2.92, 3.06, 4.74 μ , τ 7.52 (1-proton, C=CH) resolvable by thin-layer or (better) gas-liquid chromatography to give a 3:2 mixture of a fast-moving (papergram), that from the dextrorotatory isomer was a mannose; this sequence establishes the configurations of the two isomers of (IV) and their derivatives. Acetylation of (IV) gave the mixed, 3-epimeric 3-acetates, b.p. 150° (bath, 0·15 mm.), $\lambda_{\rm max}^{\rm min}$ 3·10, 4·73, 5·73 μ , τ 7·47 (C=CH), which on treatment with an equivalent of bis(1,2-dimethylpropyl)borane⁶ in diglyme, followed by hydrogen peroxide, gave *trans*-2,3-dideoxy-4,5:6,7-di-O-isopropylidene-*aldehydo*-L-*arabino*-hept-2-enose (V), b.p. 65° (bath, 0·03 mm), $\lambda_{\rm max}^{\rm max}$ 3·70, 5·92, 6·08 μ , τ 0·38 (1-proton doublet, $J_{1,2}$ 7 c./sec., H-1), 3·68 (1-proton octet, $J_{2,3}$ 16 c./sec., $J_{2,4}$ 1·5 c./sec.,

⁵ H. Zinner, E. Wittenburg, and G. Rembarz, Chem. Ber., 1959, 92, 1614.

⁶ H. C. Brown and G. Zweifel, J. Amer. Chem. Soc., 1961, 83, 3834.

H-2), 3·15 (1-proton quartet, $J_{3,4}$ 4 c./sec., H-3), Schiff-positive.

Ethynylation of 2,3-O-isopropylidene-aldehydo-D-glyceraldehyde (τ 0·3, CHO) gave 4,5-O-isopropylidene-D-erythro(and D-threo)-3,4,5-trihydroxypent-1-yne (VI), b.p. 59-60° (bath, 0·15 mm.), $\lambda_{\max}^{\text{lim}}$ 3·10, 4·75 μ , τ 7·49 (1 proton, C=CH). Acetylation of (VI) gave the corresponding 3acetates, yield 60%, b.p. 38-39° (0·015 mm.), resolvable by preparative gas-liquid chromatography into the separate 3-epimers, obtained in 3:2 proportion. The preponderant epimer, eluted first, in 90% epimeric purity, had $[\alpha]_{30}^{30} - 41°$ (c 0·7, chloroform), τ 7·52 (1-proton doublet, $J_{1,3}$ 2·2 c./sec., H-1), 7·89 (3-proton singlet, OAc), 4·60 (1-proton quartet, $J_{3,4}$ 6·8 c./sec., H-3), the other epimer (90% epimeric purity) had $[\alpha]_D^{30}$ + 50° (c 1, chloroform), τ 7·48 (1-proton doublet, $J_{1,3}$ 2·2 c./sec., H-1), 7·88 (3-proton singlet, OAc), 4·57 (1-proton quartet, $J_{3,4}$ 3·8 c./sec., H-3). Treatment of the mixed acetates of (VI) with an excess of bis(1,2-dimethylpropyl)borane,⁶ followed by hydrogen peroxide, gave trans-2,3-dideoxy-4,5-O-isopropylidene-aldehydo-D-glycero-pent-2-enose, distilled oil, Schiff positive, τ 0·55 (1-proton doublet, $J_{1,2}$ 7 c./sec., H-1), 3·80 (1-proton octet, $J_{2,3}$ 16 c./sec., $J_{2,4}$ 1 c./sec., H-2), 3·30 (1-proton quarter, $J_{3,4}$ 4·5 c./sec., H-3). This product, substance (V), and similar α,β -unsaturated aldehydo-sugars, may be useful intermediates in synthesis.

(Received, August 23rd, 1965; Com. 529.)